যদি 3sinθ + 4cosθ=5 হয়, তাহলে প্রমাণ করো tanθ=3/4

প্রশ্ন

যদি 3\sin\theta + 4cos\theta=5

হয়, তাহলে প্রমাণ করো \tan\theta=\dfrac{3}{4}

ব্যাখ্যা / সমাধান

প্রদত্ত, 3\sin\theta + 4cos\theta=5

\Rightarrow (3\sin\theta + 4\cos\theta)^2 = 5^2 [উভয়পক্ষে বর্গ করে পাই]

\Rightarrow 9\sin^2\theta + 2 \cdot 3\sin\theta \cdot 4\cos\theta + 16cos^2\theta = 25

\Rightarrow 9\sin^2\theta + 24\sin\theta\cos\theta + 16cos^2\theta = 25\times 1 = 25(\sin^2\theta+\cos^2\theta) [\because \sin^2\theta + \cos^2\theta = 1]

\Rightarrow 9\sin^2\theta + 24\sin\theta\cos\theta + 16cos^2\theta = 25\sin^2\theta+25\cos^2\theta

\Rightarrow 16\sin^2\theta - 24\sin\theta\cos\theta + 9\cos^2\theta = 0

\Rightarrow (4\sin\theta - 3 \cos\theta)^2=0

\Rightarrow 4\sin\theta - 3 \cos\theta = 0

\Rightarrow 4\sin\theta = 3\cos\theta

\Rightarrow \dfrac{\sin\theta}{\cos\theta} = \dfrac{3}{4}

\Rightarrow \tan\theta = \dfrac{3}{4} (Proved)

Leave a Comment

Your email address will not be published. Required fields are marked *