sin(90°-θ)+cosθ=√2cos(90°-θ) হলে, cosecθ এর মান নির্ণয় করো

প্রশ্ন

\sin(90^\circ-\theta)+\cos\theta=\sqrt{2}\cos(90^\circ-\theta)

হলে, \text{cosec}\theta এর মান নির্ণয় করো

উত্তর

\sqrt{\dfrac{3}{2}}

ব্যাখ্যা / সমাধান

\sin(90^\circ-\theta)+\cos\theta=\sqrt{2}\cos(90^\circ-\theta)

\Rightarrow \cos\theta+\cos\theta=\sqrt{2}\sin\theta \;\;[\because \sin(90^\circ - \theta) = \cos\theta \; \;\text{&} \; \cos(90^\circ - \theta) = \sin\theta)]

\Rightarrow 2\cos\theta=\sqrt{2}\sin\theta

\Rightarrow \sqrt{2}\cos\theta=\sin\theta

\Rightarrow \dfrac{\cos\theta}{\sin\theta}=\dfrac{1}{\sqrt{2}}

\Rightarrow \cot\theta=\dfrac{1}{\sqrt{2}} \;\;[\because \dfrac{\cos\theta}{\sin\theta} = \cot\theta]

\Rightarrow \cot^2\theta=\left(\dfrac{1}{\sqrt{2}}\right)^2 = \dfrac{1}{2}

\Rightarrow 1 + \cot^2\theta = 1 + \dfrac{1}{2} = \dfrac{3}{2}

\Rightarrow \text{cosec}^2\theta = \dfrac{3}{2} \;\;[\because 1 + \cot^2\theta = \text{cosec}^2\theta]

\Rightarrow cosec\theta = \pm\sqrt{\dfrac{3}{2}}

\because \text{cosec}\theta এর মান ঋণাত্মক হতে পারে না, তাই ঋণাত্মক মানটি অগ্রাহ্য করা হল।

\therefore cosec\theta = \sqrt{\dfrac{3}{2}}

Leave a Comment

Your email address will not be published. Required fields are marked *