sin25°/sec65° + cos25°/cosec65° + tan25°/cot65°

Question:

\dfrac{\sin(25^\circ)}{\sec(65^\circ)} + \dfrac{\cos(25^\circ)}{\text{cosec}(65^\circ)} + \dfrac{\tan(25^\circ)}{\cot(65^\circ)}

Solution:

\dfrac{\sin(25^\circ)}{\sec(65^\circ)} + \dfrac{\cos(25^\circ)}{\text{cosec}(65^\circ)} + \dfrac{\tan(25^\circ)}{\cot(65^\circ)}

\Rightarrow \dfrac{\sin(90-65)^\circ}{\sec 65^\circ} + \dfrac{\cos(90-65)^\circ}{\text{cosec}65^\circ} + \dfrac{\tan(90-65)^\circ}{\cot 65^\circ}

\Rightarrow \dfrac{\cos65^\circ}{\sec 65^\circ} + \dfrac{\sin65^\circ}{\text{cosec}65^\circ} + \dfrac{\cot65^\circ}{\cot 65^\circ}

\Rightarrow (cos65^\circ\cdot cos65^\circ) + (sin65^\circ\cdot sin65^\circ) + 1

\Rightarrow cos^{2}65^\circ + sin^{2}65^\circ + 1

\Rightarrow 1 + 1 \qquad [\because sin^2\theta + cos^2\theta = 1]

\Rightarrow 2 \quad(Answer)

Formulas Used:

sin^2\theta + cos^2\theta = 1
\sin(90-\theta) = \cos \theta
\cos(90-\theta) = \sin \theta
\tan(90-\theta) = \cot \theta

Leave a Comment

Your email address will not be published. Required fields are marked *